\qquad

Bachelor Course (Open Elective Course) (Second Semester) (CBCS) Examination, May/June 2019 DIGITAL ELECTRONIC CIRCUITS

अवधि/Duration : 3 घंटे/Hours]

[पूर्णांक/Max. Marks : 40
[न्यूनतम उत्तीर्णांक/Min. Pass Marks : 16
निर्देश :

1. प्रश्नपत्र पाँच इकाइयों में विभाजित है। प्रत्येक इकाई में आन्तरिक विकल्प दिया गया है।
2. प्रत्येक इकाई से एक प्रश्न का उत्तर दीजिए। इस प्रकार कुल पाँच प्रश्नों के उत्तर दीजिए।
3. सभी प्रश्नों के लिए समान अंक नियत हैं।
4. जहाँ आवश्यकता हो वहाँ उपयुक्त डाटा माना जा सकता है।
5. अनुवाद में विसंगति होने पर अंग्रेजी स्वरूप को सही माना जाये।
6. प्रश्नपत्र में परीक्षार्थी निर्धारित स्थान पर अपना रोल नम्बर अंकित करें।

Instructions :

1. The question paper is divided in five units. Each unit carries an internal choice.
2. Attempt one question from each unit. Thus attempt five questions in all.
3. All questions carry equal marks.
4. Assume suitable data wherever necessary.
5. English version should be deemed to be correct in case of any anomaly in translation.
6. Candidate should write his/her Roll Number at the prescribed space on the question paper.

इकाई I/(Unit I)

1. K-map की सहायता से निम्न बूलियन फंक्शन के लिए सर्किट डिजाइन करें :

$$
\mathrm{Y}=\mathrm{ACD}+\mathrm{BC}+\mathrm{CAB}
$$

Realize the Boolean function and draw circuit diagram with the help of K-map for :

$$
\begin{gathered}
\mathrm{Y}=\mathrm{ACD}+\mathrm{BC}+\mathrm{CAB} \\
\text { अथवा/(Or) }
\end{gathered}
$$

2. Basic gates की सहायता से Universal gates किस प्रकार बनाए जा सकते हैं ? चित्र सहित समझाएँ। How Universal gates can be designed by using Basic gates? Explain with diagram.

इकाई II/(Unit II)

3. निम्नलिखित बाइनरी Arithmetic को हल करें (कोई पाँच) :

Solve the following Binary Arithmetic (any five) :
(i) $\quad(3.58)_{10} \rightarrow(\quad)_{8}$
(ii) $\quad(\mathrm{AE} 2 \mathrm{C})_{\mathrm{H}} \rightarrow()_{8}$
(iii) $\quad(11011.101)_{2} \rightarrow()_{H}$
(iv) Add -28 and +28 by 2 's complement
(v) $\quad(234.72)_{8} \rightarrow()_{2}$
(vi) $\quad(\mathrm{AB} 2 . \mathrm{B} 3)_{\mathrm{H}} \rightarrow()_{2}$

अथवा/(Or)

4. दिए गए Binary codes को उदाहरण देकर विस्तारपूर्वक समझाइये :

Explain in detail the following Binary codes with example :
(i) Character codes
(ii) Numeric codes
(iii) Error correction and Detection codes
(iv) Gray codes.

इकाई III/(Unit III)

5. Parity generators एवं Chekers की कार्यप्रणाली चित्र सहित समझाइए।

Explain the working of Parity generators and checkers with the help of diagrams.

अथवा/(Or)

6. Full subtractor हेतु :
(1) Truth table बनाएँ।
(2) O / p हेतु Boolean function लिखें।
(3) Circuit diagram बनाएँ।

For full subtractor :
(1) Prove truth table.
(2) Write Boolean function for each O/P.
(3) Draw circuit diagram.

इकाई IV/(Unit IV)
7. (a) Sequential एवं combinational logic circuts में अन्तर स्पष्ट करें।

Differentiate between sequential and combinational logic circuit.
(b) T-type Flip-Flop की कार्यप्रणाली को ट्रेथ टेबल एवं चित्र सहित समझाएँ।

Explain the working of T-Flip-Flop with the help of Truth table and diagram.

अथवा/(Or)
8. (a) D-Flip-Flop की कार्यप्रणाली को ट्रुथ टेबल एवं चित्र सहित समझाएँ।

Explain the working of D-Flip-Flop with the help of truth table and diagram.
(b) Master-Slave Flip Flap क्या है? समझाएँ।

Explain Master-Slave Flip Flop.
इकाई V/(Unit V)
9. संक्षिप्त नोट लिखें :

Write short notes on :
(1) CPLDs
(2) Single slope A/D canter
(3) Binary ladder.

अथवा/(Or)
10. (a) D/A Accuracy एवं Resolution को समझाएँ।

Explain D/A accuracy and resolution.
(b) Programmable logic device क्या है? किन्हीं दो को समझाएँ।

What do you mean by programmable logic device ? Explain any two.

