Roll No. \qquad

Master of Computer Application (Fourth Semester) (CBCS) Examination, Dec. 2018/Jan. 2019

THEORY OF COMPUTATION

अवधि/Duration : 3 घंटे/Hours]
[पूर्णांक/Max. Marks : 80

[न्यूनतम उत्तीर्णांक/Min. Pass Marks : 32
निर्देश :

1. प्रश्न-पत्र पाँच इकाइयों में विभाजित है। प्रत्येक इकाई में आन्तरिक विकल्प दिया गया है।
2. प्रत्येक इकाई से एक प्रश्न का उत्तर दीजिए। इस प्रकार कुल पाँच प्रश्नों के उत्तर दीजिए।
3. सभी प्रश्नों के लिए समान अंक नियत हैं।
4. जहाँ आवश्यकता हो वहाँ उपयुक्त डाटा माना जा सकता है।
5. अनुवाद में विसंगति होने पर अंग्रेजी स्वरूप को सही माना जाए।
6. प्रश्न-पत्र में परीक्षार्थी निर्धारित स्थान पर अपना रोल नम्बर अंकित करें।

Instructions :

1. The Question Paper is divided in five Units. Each unit carries an internal choice.
2. Attempt one question from each Unit. Thus attempt five questions in all.
3. All questions carry equal marks.
4. Assume suitable data wherever necessary.
5. English version should be deemed to be correct in case of any anomaly in translation.
6. Candidate should write his/her Roll Number at the prescribed space on the question paper.
P.T.O.

(इकाई I/Unit I)

1. (a) निम्न ऑटोमेटा के चित्र के लिए मिनिमम स्टेट समतुल्य finite ऑटोमेटा बनाइये।

Construct minimum state automata equivalent to finite automata given in the following diagram.

(b) ट्रांजीशन टेबल में दर्शाए मिले मशीन को ध्यान में रखकर समतुल्य मूरे मशीन बनाइये :

Consider a Mealy machine described by transition table, construct a
Moore machine which is equivalent to Melay machine :

Next State

Present State	$a=\mathbf{0}$		$\boldsymbol{a}=\mathbf{1}$	
	State	Output	State	Output
$\rightarrow \mathrm{q} 0$	q 3	0	q 1	1
q1	q 0	1	q 3	0
q2	q 2	1	q 2	0
q3	q 1	0	q 0	1

2. (a) NFA को DFA में बदलिए।

Convert NFA to DFA.

(b) निम्न Moore टेबल के आधार पर Mealy मशीन बनाइये :

Design Mealy machine for the following table of Moore :

Present	Next		Primary
State	State	Output	
Primary	0	1	
Input			
A	B	E	0
B	E	D	0
C	C	E	1
D	D	D	0
E			

(इकाई II/Unit II)

3. (a) दिए गए चित्र के लिए रेगुलर एक्सप्रेशन ज्ञात कीजिये।

Find the regular expression for the given diagram.

(b) दिए गए रेगुलर एक्सप्रेशन के लिए ट्रांजीशन चित्र बनाइये।

Draw the transition daigram for given regular expression.

$$
R E=\left\{0+1(11+01\}^{*} 0\right\} * 1(1+01) * 0
$$

(अथवा/Or)
4. (a) निम्न के लिए ज्ञात कीजिये कि ये लैंग्वेज रेगुलर है या नहीं :

For the following given language, it is regular or not :
(a) $\mathrm{L}=\left\{a^{k} b^{2 k}: k>0\right\}$
(b) $\mathrm{L}=\left\{a^{i \wedge 2}: i>=0\right\}$
(c) $\quad \mathrm{L}=\left\{a^{i}: i\right.$ is odd number $\}$
(b) दिए गए रेगुलर एक्सप्रेशन के लिए FA बनाइये :

Construct FA for given regular expression :

$$
R E=(0+01) *(00+11)(0+01) *
$$

(इकाई III/Unit III)

5. PDA को परिभाषित कीजिये तथा निम्न रेगुलर एक्सप्रेशन को एक्सेप्ट करने के लिए PDA बनाइये : Define the PDA and design PDA which accept the following regular expression :

$$
\mathrm{RE}=0^{n} 1^{2 n+1}
$$

(अथवा/Or)
6. निम्न भाषा को एक्सेप्ट करने के लिए PDA बनाइये।

Construct PDA which accepts the language.

$$
\mathrm{L}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

(इकाई IV/Unit IV)

7. निम्न ग्रामर को CNF में बदलिए। लेफ्ट मोस्ट डेरीवेशन और राइट मोस्ट डेरीवेशन को उदाहरण सहित समझाइए।

Convert the following grammars into CNF. Explain Left most derivation and Right most Derivation with example.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ASB} \\
& \mathrm{~A} \rightarrow \mathrm{aAS}|\mathrm{a}| \varepsilon \\
& \mathrm{B} \rightarrow \mathrm{SbS}|\mathrm{~A}| \mathrm{bb}
\end{aligned}
$$

(अथवा/Or)
8. निम्न ग्रामर को GNF में बदलिए :

Convert the following grammar into GNF.
(a) $\quad \mathrm{G} 1=\{\mathrm{S} \rightarrow \mathrm{aA}|\mathrm{bB}, \mathrm{B} \rightarrow \mathrm{bB}| \mathrm{b}, \mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}\}$
(b) $\quad \mathrm{G} 2=\{\mathrm{S} \rightarrow \mathrm{aA}|\mathrm{bB}, \mathrm{B} \rightarrow \mathrm{bB}| \varepsilon, \mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon\}$

(इकाई V/Unit V)

9. टूरिंग मशीन की संकल्पना को समझाइए तथा मल्टीटेप एवं यूनिवर्सल टूरिंग मशीन को समझाइए। Explain turing machine concept and also explain multitape and universal turing.

(अथवा/Or)

10. एक टूरिंग मशीन बनाइये जो ऐसी लैंग्वेज को एक्सेप्ट करता है जिसमें विषम संख्या में α 's है। Design a TM to recognize all strings consisting of an odd number of α 's.
