9604

Printed Pages-4+1]
1B.Tech.(PP)4

Bachelor of Technology (Printing \& Packaging)
 (First Semester) Examination, Dec., 2018/Jan., 2019 BASIC ELECTRICALS AND ELECTRONICS ENGG.

अवधि/Duration : 3 घंटे/Hours]
[पूर्णांक/Max. Marks : 80
[न्यूनतम उत्तीर्णांक/Min. Pass Marks : 32
निर्देश :

1. प्रश्न-पत्र पाँच इकाइयों में विभाजित है । प्रत्येक इकाई में आन्तरिक विकल्प दिया गया है ।
2. प्रत्येक इकाई से एक प्रश्न का उत्तर दीजिए । इस प्रकार कुल पाँच प्रश्नों के उत्तर दीजिए ।
3. सभी प्रश्नों के लिए समान अंक नियत हैं ।
4. जहाँ आवश्यकता हो वहाँ उपयुक्त डाटा माना जा सकता है ।
5. अनुवाद में विसंगति होने पर अंग्रेजी स्वरूप को सही माना जाए ।
6. प्रश्न-पत्र में परीक्षार्थी निर्धारित स्थान पर अपना रोल नम्बर अंकित करें ।

Instructions :

1. The Question Paper is divided in five Units. Each unit carries an internal choice.
2. Attempt one question from each Unit. Thus attempt five questions in all.
3. All questions carry equal marks.
4. Assume suitable data wherever necessary.
5. English version should be deemed to be correct in case of any anomaly in translation.
6. Candidate should write his/her Roll Number at the prescribed space on the question paper.
P.T.O.

इकाई I (Unit I)

1. (a) स्वतंत्र तथा परतंत्र स्रोतों की विवेचना कीजिए।

Discuss the independent and dependent sources.
(b) निम्न परिपथ में मैश धारा $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ ज्ञात कीजिए।

Find the mesh current I_{1}, I_{2}, I_{3} in the following circuit :

अथवा (Or)
(a) सक्रिय, प्रतिघाती एवं आभासी शक्ति को शक्ति त्रिभुज के साथ परिभाषित कीजिए। 6 Define active, reactive and apparend power with power triangle.
(b) एक कॉइल जिसका प्रतिरोध 7Ω तथा प्रेरकत्व 31.8 mH है, $230 \mathrm{~V}, 50 \mathrm{~Hz}$ सप्लाई से जुड़ा हुआ है। गणना कीजिए :
(i) धारा
(ii) फेज कोण
(iii) शक्ति कारक
(iv) उपभोग्य शक्ति।

A coil having a resistance of 7Ω and an inductance of 31.8 mH is connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate :
(i) Current
(ii) Phase angle
(iii) Power factor
(iv) Power consumed.

इकाई II (Unit II)

2. (a) ट्रांसफॉर्मर की रचना तथा कार्यप्रणाली की व्याख्या कीजिए।

Explain construction and working of transformer.
(b) प्रतिरोध ड्रॉप 2% तथा वोल्टेज के 4% प्रतिक्रिया ड्रॉप के साथ एक ट्रांसफॉर्मर के लिए 0.8 p.f. लैगिंग पर वोल्टेज विनियमन के मूल्य की गणना कीजिए।

Calculate the value of voltage regulation at 0.8 p.f. lagging for a transformer with resistance drop 2% and reactance drop 4% of the voltage.

अथवा (Or)

(a) ट्रांसफॉर्मर की हानियाँ तथा दक्षता की व्याख्या कीजिए।

Explain losses and efficiency of transformer.
(b) एक $5 \mathrm{kVA}, 200 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$, सिंगल-फेज ट्रांसफॉर्मर ने निम्नलिखित परीक्षण समंक (डाटा) प्रदान किये :

खुला परिपथ परीक्षण (L.V. साइड) : $220 \mathrm{~V}, 0.7 \mathrm{~A}, 60 \mathrm{~W}$
शॉर्ट परिपथ परीक्षण (H.V. साइड) : $22 \mathrm{~V}, 16 \mathrm{~A}, 120 \mathrm{~W}$
यदि ट्रांसफॉर्मर फुल लोड पर ऑपरेट होता है, तो ज्ञात कीजिए :
(i) 0.9 p.f. लैगिंग पर वोल्टेज नियंत्रण
(ii) 0.8 p.f. लैगिंग पर दक्षता।

A $5 \mathrm{kVA}, 200 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer gave the following test data :

Open circuit test (L.V. side) : $220 \mathrm{~V}, 0.7 \mathrm{~A}, 60 \mathrm{~W}$
Short circuit test (H.V. side) : $22 \mathrm{~V}, 16 \mathrm{~A}, 120 \mathrm{~W}$ If the transformer operates on full load, determine :
(i) the voltage regulation at 0.9 p.f. lagging
(ii) efficiency at 0.8 p.f. lagging.

इकाई III (Unit III)

3. (a) DC मशीन की रचना तथा कार्यविधि की व्याख्या कीजिए।

Explain construction and working of DC machine.
(b) कनेक्शन डायग्राम सहित डी.सी. मशीन का वर्गीकरण समझाइये।

Explain classification of DC machine with connection diagram.
अथवा $(O r)$
(a) 3-फेज प्रेरण मशीन की रचना तथा कार्यविधि बताइये।

Explain construction and working of 3 -phase induction machine.
(b) $3-\phi$ प्रेरण मशीन का चित्र बनाइए तथा टार्क-स्लिप विशेषता की व्याख्या कीजिए। 8 Draw and explain torque-slip characteristic of $3-\phi$ induction motor. इकाई IV (Unit IV)
4. (a) डिजिटल इलेक्ट्रॉनिक्स में प्रयोग होने वाली संख्या पद्धतियों की व्याख्या कीजिए। 8 Explain number systems used in digital electronics.
(b) बूलियन algebraic सिद्धांत का प्रयोग करते हुए निम्न को सिद्ध कीजिए : 8 Prove the following using Boolean algebraic theorem :
(1) $\mathrm{A}+\overline{\mathrm{A}} \cdot \mathrm{B}+\mathrm{A} \cdot \overline{\mathrm{B}}=\mathrm{A}+\mathrm{B}$
(2) $\mathrm{A} \cdot \mathrm{B}+\overline{\mathrm{A}} \cdot \mathrm{B}+\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}=\overline{\mathrm{A}}+\mathrm{B}$.

अथवा (Or)

(a) डी-मॉर्गन सिद्धांत की उदाहरण सहित विवेचना कीजिए।

State De-Morgen's theorem with example.
(b) निम्नलिखित लॉजिक गेटों के लिए लॉजिक चिह्न, निष्पीडन (व्यंजक) तथा सत्यता सारणी लिखिए : 10

Write the logic symbol, expression and truth table for the following logic gates :

AND, OR, NOT, NOR, NAND, EX-NOR, EX-OR.

इकाई V (Unit V)

5. (a) ऊर्जा-बैंड डायग्राम की सहायता से चालक, विद्युतरोधी तथा सेमीकंडक्टर्स में सोदाहरण अंतर स्पष्ट कीजिए।

Differentiate between conductors, insulators and semiconductors with the help of energy band diagram with example.
(b) $p n p$ ट्रांजिस्टर की कार्यप्रणाली स्वच्छ चित्र सहित समझाइये।

Explain with neat diagram, the working of $p n p$ transistor.

अथवा (Or)
(a) P-N जंक्शन डायोड की चित्र सहित व्याख्या कीजिए।

Explain P-N junction diode with diagram.
(b) CB, CE तथा CC ट्रांजिस्टर संरूपण की तुलना कीजिए।10

Compare CB, CE and CC transistor configuration.

